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Abstract—One of the important factors affecting micro-video
recommender systems is to model the multi-modal user prefer-
ence on the micro-video. Despite the remarkable performance of
prior arts, they are still limited by fusing the user preference
derived from different modalities in a unified manner, ignoring
the users tend to place different emphasis on different modalities.
Furthermore, modality-missing is ubiquity and unavoidable in
the micro-video recommendation, some modalities information
of micro-videos are lacked in many cases, which negatively
affects the multi-modal fusion operations. To overcome these
disadvantages, we propose a novel framework for the micro-video
recommendation, dubbed Dual Graph Neural Network (Dual-
GNN), upon the user-microvideo bipartite and user co-occurrence
graphs, which leverages the correlation between users to col-
laboratively mine the particular fusion pattern for each user.
Specifically, we first introduce a single-modal representation
learning module, which performs graph operations on the user-
microvideo graph in each modality to capture single-modal user
preferences on different modalities. And then, we devise a multi-
modal representation learning module to explicitly model the
user’s attentions over different modalities and inductively learn
the multi-modal user preference. Finally, we propose a prediction
module to rank the potential micro-videos for users. Extensive
experiments on two public datasets demonstrate the significant
superiority of our DualGNN over state-of-the-arts methods.

Index Terms—Micro-video Recommender Systems, Graph
Neural Network, Multi-modal fusion, Representation Learning

I. INTRODUCTION

With the rise of social media, micro-videos have become
ubiquitous in our daily life. Facing the overload of micro-
videos on the sharing platforms (e.g., Tiktok and Kwai),
the service providers are troubled by locating the interesting
micro-videos for users. To tackle this drawback, they develop
the micro-video recommender system, which aims at discov-
ering the users’ tastes and accordingly ranking the candidate
micro-videos.

For this purpose, one common solution is incorporating the
content information into the collaborative filtering scheme,
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Fig. 1. Illustration of the difference between the unified operations (e.g.,
element-wise mean) and the personalized fusion pattern in multi-modal user
preference representation learning, where uv ,ua,ut denote single-modal
representations of user u. And umul denotes the multi-modal representation
user u , and i denotes micro-video.

so as to model the user preference with the content infor-
mation [1], [2], [3]. For example, Liu et al. [4] proposed
to extract the semantic information from reviews, and com-
bine them with the matrix factorization technique. Gener-
ally, the approaches could be classified into two categories:
modality-agnostic methods and modality-aware methods. For
the modality-agnostic methods, they ignore the difference
of user preference among the multiple modalities and treat
the multi-modal user preference as a whole. For instance,
Liu et al. [5] proposed a User-Video Co-Attention Net-
work (UVCAN), which concatenates multi-modal features of
users and micro-videos, and uses the attention mechanism to
learn multi-modal representations for them. However, such
methods forgo the distinction between different modalities,
therefore, some modality-aware approaches are proposed more
recently. For example, Wei et al. [6] proposed a Multi-Modal
Graph Convolutional Network (MMGCN), which learns the
single-modal user preferences and concatenates them to rep-
resent the multi-modal user preference on the micro-video.

Despite the remarkable performance achieved by previous
studies, we argue that there are two challenges still remained,
which harm the multi-modal user preference modeling and
cause the sub-optimal performance.

• It is presupposed that the multi-modal fusion pattern for all
users follows a pre-defined and unified manner. However,
this assumption is too strict, since the users tend to place
different emphasis on different modalities and have their
opinions on integrally choosing the multi-modal instances.
Taking Figure 1 as an example, User1 and User2 prefer the
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Fig. 2. The overall framework of our proposed DualGNN. It consists of the single-modal representation learning module which captures the single-modal
user preference on each modality user-microvideo bipartite graph, the multi-modal representation learning module that explicitly models the user’s tastes on
different modalities and inductively learns the multi-modal user preference, and the prediction module to estimate the user’s preference towards the target
micro-video.

high-quality frame, while User3 and User4 are probably
attracted by the beautiful soundtrack. Moreover, a unified
fusion operation (e.g., element-wise mean) makes each
user’s single-modal representations equally aggregated. In
the contrast, the personalized fusion pattern for each user
should give higher proportions to visual and audio modali-
ties for User1, User2, and give higher proportions to audio
and textual modalities for User3 and User4. Therefore, how
to define the particular fusion function for each user is
our first challenge.

• Modality-missing is ubiquity and unavoidable in the micro-
video recommendation. For the micro-video, its develop-
ment is powered by its easy-to-operate and instant sharing.
However, the loose requirement for posting is a double-
edged sword, which inevitably leads to information miss-
ing [7]. Modality-missing not only perturbs the single-
modal user preference representation, but negatively affects
the multi-modal fusion operations. Particularly, the unified
fusion pattern is more difficult to adapt to the uncertain
multi-modal inputs. Therefore, how to make the multi-
modal fusion pattern be robustness facing the modality-
missing cases is our second challenge.

To remedy the challenges, we propose to design an inductive
model, which is able to capture the specific multi-modal fusion
pattern for each user. To this end, we follow the fact that users
who have the same behavior tend to own similar preferences
and thus the co-occurrence users (i.e., users who have browsed
some of the same videos) reveal their similar preferences with
respect to both single-modal and multi-modal cases. Therefore,
we introduce to model the co-occurrence relationship between
users to collaboratively mine the particular fusion pattern
for each user. For this purpose, we build a novel framework,
termed Dual Graph Neural Network (DualGNN), upon the
user-microvideo bipartite graph and the user co-occurrence
graph. In particular, we first simplify the graph-based model
on the multimedia recommendation and devise a new single-
modal preference learning module, which performs the graph
operations on the user-microvideo graph in each modality to
capture single-modal user preferences on different modalities.
And then, we design a multi-modal representation learning
module to represent the multi-modal user preference. Different
from existing works that perform a unified operation (e.g.,

element-wise mean) on multi-modal information, we disentan-
gle the learning process into the information construction and
aggregation operations, in order to explicitly model the user’s
attentions over different modalities and inductively learn the
multi-modal user preference. More specifically, we organize
the co-occurrence users as a graph structure and initialize each
user node with its single-modal representations weighted by
the individual attention on each modality. Furthermore, by
iteratively conducting the graph operations, we capture the
co-occurrence relationship and inject it into the user nodes,
facilitating to learn the particular multi-modal user represen-
tation for each user. Finally, a prediction module could be
used to rank the potential micro-videos for users by measuring
the similarity of each user and micro-video pair. To demon-
strate the effectiveness of our proposed method, we conduct
extensive experiments on two publicly accessible datasets. The
experimental results show that DualGNN outperforms state-
of-the-art baselines, such as MMGCN, LR-GCCF [8], and
LightGCN [9]. To summarize, our contributions are three-fold:

• We argue the issue that the users tend to place different
emphasis on different modalities, and highlight the signifi-
cance of learning particular fusion pattern for each user in
multi-modal fusion.

• We propose a new framework DualGNN, which captures
the user’s single-modal preferences on different modalities,
then explicitly modeling the user’s attentions over different
modalities, and inductively learns the multi-modal user
preference. Further, the learned multi-modal fusion pattern
could reduce the negative influence of the modality-missing
cases.

• We perform extensive experiments on two public datasets
to demonstrate the effectiveness of our approach. Our codes
are available in https://github.com/wqf321/dualgnn

The remainder of this paper is organized as follows. We
introduce related work in section II, and give the description
of the problem statement of DualGNN in Section III. In section
IV, the detail of the proposed model is presented. In section V,
we setup the experiments and present the results with analysis.
Finally, we conclude our work in Section VI.
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II. RELATED WORK

A. Micro-video Personalized Recommendation

Recommender systems play a pivotal role in current micro-
video sharing platforms, which attracts a large number of
researchers to design efficient recommendation models [10],
[11]. These models parameterize users and micro-videos as
embeddings, and learn the embedding parameters by recon-
structing historical user-microvideo interactions. For exam-
ple, He et al. [12] proposed a Visual Bayesian Personalized
Ranking model (VBPR) model based on CF-framework. It
leverages visual features to enrich the ID embeddings of
micro-videos, and learns better representation of users. Liu et
al. [5] proposed a novel framework User-Video Co-Attention
Network (UVCAN), in order to learn multi-modal information
from both user and microvideo side using attention mech-
anism. Jiang et al. [1] developed a parallel temporal mask
network, which is able to learn multiple temporal information
for micro-video recommendation. However, most of these
works only leverage the multi-modal information as a whole
or even ignore the multi-modal information. Wei et al. [6]
developed a new method MMGCN which employs information
propagation on the modality-aware bipartite user-microvideo
graph, in order to obtain better user representations based on
multiple modalities micro-video content information.

However, they simply average users’ multi-modal repre-
sentations as a result, which is insufficient to model users’
preferences for different modalities, and cannot deal with the
modality-missing problem. Different from the existing studies,
we propose to model a personalized multi-modal fusion pattern
for each user, and iteratively conduct the graph operations on
the user co-occurrence graph, so as to inductively learn the
multi-modal user preference and solve the modality-missing
problem.

B. GNN-based Personalized Recommendation

Deep learning models have been widely used in structured
data, such as audio, image, and text [13], [14], [15]. However,
it is difficult to define an intuitive computing framework for
graph data due to its complexity. Towards this end, Kipf et
al. [16] proposed a graph convolutional network to propagate
neighbor information on the graph. Due to its effectiveness
and simplicity, Graph Neural Networks (GNN) have been
widely used in the computer vision [17], [18], information
retrieval, and recommendation [3], [19]. For instance, Ji et
al. [20] transformed the irregular superpixel information to
a structured feature representation, and utilized the graph
neural network to interact the context of superpixel nodes
for saliency detection. For user preference modeling, Berg
et al. [21] utilized the graph convolutional operation on the
bipartite interaction graph to generate the user preference
representation by aggregating its neighbor micro-videos’ fea-
tures. Recent years, a new method Neural Graph Collaborative
Filtering (NGCF) [22] is proposed to explicitly integrate
the collaborative signals into the embedding process. Further,
He et al. [9] simplified the design of GCN by abandoning
the use of feature transformation and nonlinear activation,
in order to let it be more concise and appropriate for the

recommendation task, and proposed a strong model named
LightGCN. Recently, Liu et al. [23] proposed an IMP-GCN
model to exploits high-order neighbors from the same sub-
graph, and designed an unsupervised sub-graph generation
module, which can effectively identify users with common
interests by exploiting both user feature and graph structure.

While these GCN-based recommendation models almost
simply apply graph convolution network propagation on the
bipartite interaction graph, ignoring user’s multi-modal pref-
erence for micro-videos, thus we design the multi-modal
representation learning module to learn user’s multi-modal
preference.

C. Multi-modal Fusion

Multi-modal fusion has gained much attention of many re-
searchers due to the benefit it provides for various multimedia
analysis tasks. Traditional multi-modal fusion mainly consist
of early, late, and hybrid fusion approaches. In the early fusion
schemes, features from different modalities are integrated as
a whole and input to the network. For example, Couprie
et al. [24] presents an early fusion strategy via a simple
concatenation of RGB and depth channels before feeding into
a segmentation network. Hu et al. [25] proposed a novel
early fusion architecture based on attention mechanism, known
as ACNet, which selectively gathers valuable features from
RGB and depth branches. In contrast, late fusion methods
merge data after a separate full processing, and the individual
modalities can be processed by powerful targeted approaches.
Wei et al. [26] augmented feature vectors by the cooperative
nets in each modalities and fed into an attention net, followed
by a late fusion over the prediction results from different
modalities. The hybrid fusion strategy is proposed to combine
the strengths of early fusion and late fusion as an alternative
method. Wang et al. [27] proposed to combine early and
late fusion together, and designed a universal hybrid fusion
framework that can effectively overcome the shortcomings of
the late fusion scheme.

However, most of the traditional multi-modal fusion ap-
proaches are unified, which is unfavorable to describe users’
personalized multi-modal preferences in recommendation
tasks. Considering that it is unrealistic to learn the partic-
ular multi-modal fusion function separately for each user,
we proposed to explicitly model the user’s attentions over
different modalities, and inductively learn the multi-modal user
preference.

III. PRELIMINARY

Given a set of N users u ∈ U and a set of M micro-
videos i ∈ I. Let P+ = {pui|u ∈ U , i ∈ I} be the observed
interactions, where pui denotes the edge between user u and
micro-video i. We organize the user-microvideo bipartite graph
as G = {V, E} according to their historical interactions.
Whereinto, V = U ∪ I denotes the node set of all users and
micro-videos, and the edge set E = P+ represents observed
user-microvideo interactions. Beyond the interactions, each
micro-video contains multi-modal content information. And,
we use m ∈ M = {v, a, t} as the modality indicator, where
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v, a, and t refer to the visual, acoustic, and textual modalities,
respectively. The representations of the input user u of each
modality are randomly initialized as u

(0)
m ∈ Rd, and the

representations of the input micro-video i are pre-processed
by multi-modal features as i

(0)
m ∈ Rd, where d denotes the

dimension of user and micro-video representations.
As mentioned before, we aim to construct the co-occurrence

relationship between users. Thus, we record the number of
micro-videos that have been both interacted by each user pair
in a common way. We use a matrix C ∈ RN×N to represent
each user’s co-occurrence times with other users, where N
denotes the size of the user set. Whereinto, each entry of C,
denoted Cu,u′ , is the number of co-occurrences between u
and u′. Further, we use set Cu = {Cu,u1 , Cu,u2 , ..., Cu,uN−1}
to denote the co-occurrence times of all co-occurrence users
with user u.

IV. METHOD

In this section, we address the aforementioned challenges
of modeling the users’ multi-modal preferences representation.
We begin with a brief overview of our framework and then
elaborate on its components.

As illustrated in Figure 2, the DualGNN framework consists
of three components: 1) a single-modal representation learning
module, which performs the graph network operations to
capture the modal-specific user preference and micro-video
representation on each modality user-microvideo bipartite
graph; 2) a multi-modal representation learning module that
explicitly models the user’s taste on different modalities and
inductively learns the multi-modal user preference; and 3) a
prediction module that ranks the potential micro-videos for
users by measuring the similarity of each user and micro-video
pair.

A. Single-modal representation learning module

Following the settings in MMGCN, we aim at perform-
ing the graph convolutional operations on the single-modal
bipartite graph to learn the user preference in each modality
(a.k.a. single-modal representation). However, we are inspired
by the arguments that the feature transformation and nonlinear
activation of common GCN have no positive impact on the
effectiveness of collaborative filtering [9], and accordingly
simplify the graph convolutional operations for the multime-
dia recommendation. Specifically, we discard the self-loop
information propagation of each node and purely model its
collaborative signal. Then, the feature transformation is also
ignored to reduce the cost and facilitate the model optimiza-
tion. Therefore, at the (l+ 1)-th layer, the operation could be
formulated as:

u(l+1)
m =

∑
i∈Nu

1√
|Nu|

√
|Ni|

i(l)m ,

i(l+1)
m =

∑
u∈Ni

1√
|Ni|

√
|Nu|

u(l)
m ,

(1)

where Nu and Ni represent the neighbors of u and i in the
bipartite graph, respectively. In addition, u(l)

m ∈ Rd and i
(l)
m ∈

Rd denote the representations of user and micro-video learned
from the previous layer in each modality, respectively. We use
the symmetric normalization 1√

|Ni|
√
|Nu|

to avoid the scale of

representations increasing with graph convolution operations.
By iteratively conducting the above operations, the users and

micro-videos obtain their collaborative signal from each layer.
After L layers propagation, we combine them with the features
of each node to form the desired single-modal representations
of each user and micro-video, formally,

um =
L∑

l=0

u(l)
m , im =

L∑
l=0

i(l)m . (2)

As a result, the informative signals are encoded into the
single-modal user and micro-video representations. The same
operations are adopted to the bipartite graph of each modality.
After propagating on different modalities bipartite graphs, we
gain the representations of the users and micro-videos in each
modality.

B. Multi-modal representation learning module
To inductively learn the particular multi-modal fusion pat-

tern for each user, we disentangle the learning process into the
information construction and aggregation operations.

1) Multi-modal information construction: Inspired by pre-
vious methods on fusing multi-modal information [6], we
also present several construction methods for the multi-modal
information construction. At first, we initialize a parameter
set {αu,v = 1, αu,a = 1, αu,t = 1} for each user, where αu,v ,
αu,a, and αu,t denote the user’s preference for visual, acoustic,
and textual modalities, respectively.

a. Attentively concatenation construction: An intuitive
method to construct the multi-modal information is to con-
catenate each single-modal representation of a user as:{

hu = αu,vuv||αu,aua||αu,tut,

umul = Wmhu + bm,
(3)

where || denotes the concatenation operation, Wm ∈ Rd×3d

and bm ∈ Rd denote linear transformation matrix and bias,
respectively. umul denotes the constructed multi-modal repre-
sentation of u. In this way, each single-modal representation
could be intactly considered in constructing the multi-modal
information.

b. Attentively sum construction: Inspired by the fact that
the element-wise sum can preserve most features of the multi-
modal information [28], we could attentively integrate the
single-modal preference of users as:

umul = αu,vuv + αu,aua + αu,tut. (4)

c. Attentively maximum construction: For user’s single
modal representations, we select the maximum value of each
dimension as the user’s multi-modal preference representation.
Such operation can be formally defined as:

umul = max(αu,vuv, αu,aua, αu,tut). (5)

This operation is based on the assumption that the most
prominent single-modal representation of each user carries the
richest information for its multi-modal representation.
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2) Multi-modal information aggregation: Following the fact
that users who have interacted with the same micro-videos are
generally close to each other in the multi-modal preference.
We argue that the personalized fusion pattern of each user is
hidden in such user co-occurrence relationship.

However, the co-occurrence times between a user and
his/her co-occurrence users is not consistent. More specially,
the user may have a large number of co-occurrence times
with a small group of users, while most users only co-
occur a few times with the user. Thus, we argue that only
users with a certain number of co-occurrences have more
similar multi-modal preferences. For this purpose, we propose
a Top-K sampling strategy for the user co-occurrence graph
construction as follows.

Top-K sampling strategy: First, we define the sampled
graph as GU = {U ,A}, and A = {(u, u′)|u, u′ ∈ U}
reflects the node pairs between u and u′. We sample the top-
K frequent users for each user from the user co-occurrence
matrix C, and an edge in graph GU could be defined as quu′ .
If quu′ = 1, it indicates that Cu,u′ belongs to the top-K values
of Cu, otherwise quu′ 6= 1. We will discuss the effect of K on
the model performance in the experiment section.

Thereafter, based on the sampled graph GU , we design two
aggregation methods to derive each user’s fusion pattern in the
user co-occurrence graph as follows.

Mean aggregation: This method simply averages the rep-
resentations of each user’s neighbor nodes as the aggregated
information, and updates the user’s representation as:

u
(l′+1)
mul = u

(l′)
mul +

∑
u′∈Nu,c

1

|Nu,c|
u
′(l′)
mul, (6)

where l′ is the number of GCN layers, and Nu,c denotes user
u’s neighbor nodes in the user co-occurrence graph.

Softmax weighted aggregation: In order to enhance the
impact of neighbor users who have more co-occurrence times,
we use the softmax function to compute each user’s aggrega-
tion weight:

u
(l′+1)
mul = u

(l′)
mul +

∑
u′∈Nu,c

exp(Cu,u′)∑
u′∈Nu,c

exp(Cu,u′)
u′mul

(l′).

(7)
After L′ layers propagation, each user’s personalized fu-

sion pattern could be mined from its neighbor nodes in the
user co-occurrence graph. Noticing that we don’t design the
symmetric multi-modal representation learning module for
micro-videos, and the reasons can be summarized in the
following two aspects. For one side, micro-videos’ features
are more objective than the users’ preferences to characterize
the instance. For another, the micro-videos’ fusion patterns
are probably consistent with their exposure accessed by users.
More specifically, since the micro-videos are collected from
the same platform, we believe that they expose to users in a
unified manner, which causes the micro-video’s same fusion
pattern.

C. Prediction Module

After the propagation of previous modules, we capture the
representations of nodes as:{

u∗ = u
(L′)
mul,

i∗ = iv + ia + it,
(8)

where u∗ and i∗ denote the final representation of user u
and micro-video i, respectively. u(L′)

mul denotes the user’s rep-
resentation after multi-modal information aggregation. Finally,
we compute the inner product between user and micro-video
representations as:

yu,i = u∗Ti∗, (9)

where the output yu,i denotes the user’s preference towards
the target micro-video. A high score suggests that the user
prefers the micro-video and vice versa.

D. Optimization

To optimize the model parameters, we adopt the Bayesian
Personalized Ranking [29] loss to rank user-microvideo pairs.
Thus, we construct a triplet of one user u, one observed micro-
video i, and one unobserved micro-video j, formally as:

R = {(u, i, j)|(u, i) ∈ E , (u, j) /∈ E}, (10)

where R is a triplet set for training. And we formulate the
objective function as:

L =
∑

(u,i,j)∈R

− lnµ(yu,i − yu,j) + λ ||θ||2 , (11)

where µ(·), λ, and θ denote the sigmod function, regulariza-
tion weight, and parameters of models, respectively.

E. Model Complexity

In this section, we analyze the complexity of the proposed
DualGNN, and compare it with MMGCN and LightGCN.
Suppose the number of nodes and edges in the user-microvideo
interaction graph are |V| and |E|, respectively. Let |U| denotes
the number of nodes in the user co-occurrence graph, and T
is the number of triplets in the training set. The complexity
mainly comes from two parts:

Graph Convolution. The complexity of graph convolution
of LightGCN is O(L|E|d). Since DualGNN constructs three
sub-graphs for different modalities, the complexity of Du-
alGNN on sub-graphs is O(3L|E|d). Considering the multi-
modal information aggregation of DualGNN, the complexity
of graph convolution of DualGNN is O(3L|E|d+ L′|U|Kd).
MMGCN not only constructs three sub-graphs for different
modalities, but also uses the feature transformation in graph
convolution. Thus, the complexity of graph convolution of
MMGCN is O(3L|E|d+ 3L|V|d2).

BPR Loss. For all these models, only the inner product is
conducted in the prediction layer, for which the time cost of
the whole training epoch is O(T d).

We summarize the time complexity in training among
DualGNN, MMGCN, and LightGCN in Table I.
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TABLE I
THE COMPARISON OF ANALYTICAL TIME COMPLEXITY AMONG

DUALGNN, MMGCN, AND LIGHTGCN

Model DualGNN MMGCN LightGCN
Graph Convolution O(3L|E|d+ L′|U|Kd) O(3L|E|d+ 3L|V|d2) O(L|E|d)

Loss O(T d) O(T d) O(T d)

TABLE II
BASIC STATISTICS OF THE DATASETS. NOTE THAT V, A, AND T DENOTE

DIMENSIONS OF VISUAL, ACOUSTIC, AND TEXTUAL MODALITIES,
RESPECTIVELY.

Dataset Interactions Micro-videos Users Sparsity V A T
MovieLens 1,239,508 5,986 55,485 99.63% 2,048 128 100

Tiktok 726,065 66,456 32,309 99.96% 128 128 128

V. EXPERIMENTS

In this section, we conducted experiments to demonstrate
the effectiveness of our proposed model and answer the
following questions:

RQ1: How do our model and state-of-the-art methods
perform on the real-world datasets?

RQ2: How do different components (e.g. multi-modal
information construction methods, the size of sampled co-
occurrence users) of our model and hyper-parameters affect
DualGNN?

RQ3: How does DualGNN affect the representation of
multi-modal user preference?

RQ4: Could DualGNN work well in the modality-missing
cases?

At the beginning, we presented settings of datasets, base-
lines, evaluation metrics, and parameters, and then answered
the above four questions.

A. Datasets

As the micro-video contains rich multimedia information
- frames, sound tracks, and descriptions, we performed ex-
periments on two datasets designed for the micro-video rec-
ommendation (i.e., Movielens1 and Tiktok2). The statistics of
datasets are summarized in Table II.

Movielens. This dataset is widely used in the personalized
recommendation. Beyond the user and micro-video interaction
records, this dataset contains the videos’ trailers, titles, and
descriptions [6]. The keyframes and audio tracks are extracted
from the trailers so that we can leverage the visual and acoustic
features. Consistent with MMGCN, we used ResNet [30],
VGGish [31], and Sentance2Vector [32] to extract the visual,
acoustic, and textual features from the frames, audio tracks,
and descriptions, respectively.

Tiktok. This dataset is released by Tiktok, which contains
users, micro-videos with duration of 3-15 seconds and their
historical interactions. In addition, the multi-modal features
(i.e. visual, acoustic and textual) are extracted and published
without providing the raw data.

For each dataset, we used the ratio 8:1:1 to randomly
split the historical interactions of each user and constituted
the training set, validation set, and testing set. In the training

1https://movielens.org/.
2https://www.tiktok.com/.

set, for each user-microvideo pair, we randomly sampled
one micro-video, which the user has not interacted with, to
construct the triple for optimizing the model. The validation
set and testing set are respectively used to tune the hyper-
parameters and evaluate the performance in the experiments.

B. Baselines

To demonstrate the effectiveness of our proposed method,
we compared it with the following methods:

VBPR [12]. This is a benchmark model in the multimedia
recommendation. It incorporates the content information into
the collaborative filtering framework. Specially, we concate-
nated the multi-modal features of the micro-video into a single
feature vector to infer interactions between users and micro-
videos.

MMGCN [6]. This is a GCN-based framework designed
for the micro-video recommendation, in which the single-
modal user preference can be learned. It refines the micro-
videos’ representations with the learned users’ single-modal
preferences by performing the GCN propagation on the user-
microvideo graph in each modality.

STAR-GCN [33]. This is a multi-block graph encoder-
decoder framework for graph convolutional matrix completion.
The graph encoder generates node representations by encoding
semantic graph structures, and the decoder aims to recover the
input node embeddings. In our experiments, we leveraged the
recovered node embeddings to compute ranking scores.

LR-GCCF [8]. This is a general GCN-based Collaborative
Filtering (CF) model for recommendation, which uses a simple
linear embedding propagation for each layer, and adopts a
residual based network structure which concatenates the em-
beddings obtained at each layer to predict the user preference
for micro-videos.

LightGCN [9]. This is a light yet effective model by in-
cluding the most essential ingredients of GCN for recommen-
dation. This model adopts the simple weighted sum aggregator
as graph convolution operation and combines the embeddings
obtained at each layer to form the final representation of each
user.

C. Evaluation Metrics

For each user in the validation and testing sets, we treated
all micro-videos which she/he did not consume before as
the negative samples. With the trained model, we scored the
interactions of the user and micro-video pairs and ranked them
in the descending order. Consistent with most recommendation
works, we adopted Recall@P and Normalized Discounted
Cumulative Gain (NDCG@P) to evaluate the performance of
proposed model, where @P denotes top-P candidate micro-
videos of each user. Specially, we set P =1, 5, 10 and reported
the average values of the above metrics for all users during
the testing phase.

D. Parameter Settings

We used Xavier [34] to initialize parameters, and optimized
DualGNN with Adam [35], based on the default mini-batch
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TABLE III
PERFORMANCE COMPARISON BETWEEN OUR MODEL AND THE BASELINES OVER TWO DATASETS.

Model Movielens Tiktok
Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@1 NDCG@1 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@1 NDCG@1

VBPR 0.2180 0.2389 0.1324 0.2028 0.0362 0.0997 0.0428 0.0426 0.0267 0.0325 0.0084 0.0149
MMGCN 0.2305 0.2529 0.1506 0.2140 0.0451 0.1102 0.0786 0.0710 0.0475 0.0540 0.0134 0.0236

STAR-GCN 0.2413 0.2653 0.1598 0.2260 0.0496 0.1193 0.0833 0.0748 0.0500 0.0565 0.0148 0.0248
LR-GCCF 0.2445 0.2720 0.1596 0.2325 0.0497 0.1259 0.0779 0.0732 0.0477 0.0552 0.0129 0.0227
LightGCN 0.2658 0.2941 0.1792 0.2553 0.0595 0.1421 0.1208 0.1081 0.0763 0.0840 0.0234 0.0383
DualGNN 0.2822 0.3131 0.1911 0.2745 0.0661 0.1579 0.1318 0.1151 0.0842 0.0901 0.0250 0.0403
%Improv. 6.17% 6.46% 6.64% 7.52% 11.09% 11.12% 9.11% 6.48% 10.35% 7.26% 6.84% 5.22%

TABLE IV
EFFECT OF COMPONENTS IN THE MULTI-MODAL REPRESENTATION

LEARNING MODULE.

Model Movielens Tiktok
Recall@10 NDCG@10 Recall@10 NDCG@10

Dual-A-U 0.2467 0.2692 0.1026 0.0897
Dual-A 0.2660 0.2890 0.1136 0.0995
Dual-U 0.2766 0.3068 0.1242 0.1101

DualGNN 0.2822 0.3131 0.1318 0.1151
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Fig. 3. Effect of single modality and multi-modal fusion.

size as 1024. We set K=40 and K=50 for the number of users
for multi-modal information aggregation on the Movielens
dataset and the Tiktok dataset, respectively. We searched the
learning rate in {0.1, 0.01, 0.001, 0.0001, 0.00001} and the
regularization weight in {0.1, 0.01, 0.001, 0.0001, 0.00001}.
Since multi-modal features in the Movielens dataset have
different dimensions, we unified the dimension to 64 as the
input of all models. For the Tiktok dataset, we used the
dimension 128 for all models to ensure a fair comparison.
Besides, we chose the attentively sum construction and the
softmax weighted aggregation (in section 2.3) for DualGNN,
and set L = 2, L′ = 1 as the number of GCN layers
of the single-modal representation learning module and the
multi-modal representation learning module, respectively. Our
implementation is based on the Pytorch3 API.

E. Performances Comparison (RQ1)

The comparative results are summarized in Table III. Note
that ”%Improv.” denotes the improvement of DualGNN’s
result compared to the best result of baselines, and the best
result of the baselines is indicated by ” ”. From the results,
we have the following observations:

(1) All GCN-based models achieve better results than the
benchmark model VBPR. It demonstrates that the graph con-

3https://pytorch.org/.
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Fig. 4. Effect of different multi-modal information construction methods.

volutional operations benefit the representation learning in the
recommendation, and it do make sense to use the GCN-based
framework to learn the multi-modal user representation.

(2) DualGNN obviously outperforms MMGCN in all met-
rics. The reason has two aspects: on the one hand, DualGNN
reduces noise in the GCN propagation by adopting the simple
sum aggregator and abandoning the use of self-loop and
feature transformation; on the other hand, DualGNN models
personalized fusion pattern for each user, while MMGCN
simply averages user’s each single-modal representation as
his/her multi-modal preference.

(3) The proposed DualGNN framework consistently out-
performs state-of-the-art baselines in all cases, which could
demonstrate its effectiveness for the micro-video recommenda-
tion. We attribute the effectiveness of the DualGNN framework
to model each user’s different preferences for different modali-
ties, and learn the multi-modal user preference in an inductive
manner. Thus the DualGNN framework could make multi-
modal users preference representation learning more accu-
rately, and increase the accuracy of the top-k recommendation.

F. Ablation Study (RQ2)

In this section, we conducted several experiments to study
the proposed DualGNN as follows.

1) Effect of the components in the multi-modal representa-
tion learning module.

Dual-A-U: To demonstrate the effectiveness of the multi-
modal representation learning module, this variant simply
averages each single-modal representation without the user co-
occurrence graph propagation.

Dual-A: To evaluate the multi-modal information construc-
tion, this variant simply averages each single-modal represen-
tation, and feeds the generated representation into the user
co-occurrence graph.
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Fig. 5. Effect of the sampled user co-occurrence number and different
information aggregation methods.

DualGNN LightGCN

User1

User2User3

User4

User5

User1

User2

User3

User4 User5

Fig. 6. Visualization of the learned t-SNE transformed representations
comparison between LightGCN and DualGNN.

Dual-U: This model leverages attentively weighted-sum
construction to construct the multi-modal information. To
evaluate the co-occurrence graph, in this variant, we neglected
it and predicted the interactions of the user-microvideo pairs
directly.

As illustrated in Table IV, we observed that: (1) Dual-A
outperforms Dual-A-U in all cases, showing that multi-modal
information aggregation based on the user co-occurrence graph
could boost the expressiveness of the user multi-modal rep-
resentation; (2) the performance of Dual-U is superior than
Dual-A-U, which implies that attentively constructing multiple
modalities information can better represent the multi-modal
user preference; and (3) DualGNN achieves the best perfor-
mance, which demonstrates the effectiveness of the multi-
modal representation learning module.

2) Effect of single modality and multi-modal information
construction methods. We constructed several single modality
versions of DualGNN to verify the necessity of the information
construction for different modalities. And Dual/v, Dual/a,

User

DualGNN

MMGCN

Fig. 7. Visualization of the co-occurrence users’ multi-modal representations.

Visual
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Textual
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Movielens
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Fig. 8. Visualization of learned construction weight of users selected from
two datasets.

and Dual/t denote the model only captures single-modal
user preference of visual, acoustic, and textual in the whole
process, respectively. Note that all of these models feed single-
modal representations into the user co-occurrence graph. We
compared DualGNN with all these variants and showed the
results in Figure 3.

From the results in Figure 3, we have following observa-
tions: (1) Models with different single-modal features have
different performance, which caused by the different represen-
tativeness of different modalities. Specifically, textual modality
got the worst performance among single-modal variants in two
datasets, while visual modality and acoustic modality got the
best performance in Movielens and Tiktok, respectively; (2)
DualGNN outperforms all variants in Figure 3. It demonstrates
that fusing different modal’s representation actually improves
model’s performance, thus the multi-modal representation
learning module is indispensable.

For the construction methods mentioned in Section 2.3,
we designed the corresponding model variants named as
Dual-CM, Dual-M, and Dual-WS, which denote our model
attentively using concatenation construction, maximum con-
struction, and sum construction methods, respectively. The
results of experiments are illustrated in Figure 4. Clearly, the
attentively sum construction method outperforms than other
methods, it implies that preserving most information of the
multi-modal could capture the user’s attentions over different
modalities more comprehensively.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on August 17,2022 at 07:28:19 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3138298, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. ?, NO. ?, AUGUST 2021 9

0.28 
IT 
I I 

0.26 
I

I I 
0.24 

I I 

1. 
0.22 _—-

0.20 

0.18 

20% 

0.12 

0.10 

0.08 

0.06 

0.04 
20% 

T 

• 

DualGNN-origin 
DualGNN-missing 
MMGCN-origin 
MMGCN-missing 

I 

牟 ♦ 

• • 

40% 60% 80% 
Movielens w.r.t. Recall@lO 

DualGNN-missing 
MMGCN-origin 
MMGCN-missing 

40% 60% 80% 
Tiktok w.r.t. Recall@lO 

Tl 
0.30 

I I 

I I 
0.28 

I I 
I I 

0.26 
.1 

0.24 

0.2217--e- DualGNN-origin 

100% 

1士DualGNN-missing
一. MMGCN-origin

0.20什士MMGCN-missing
'-r— — 

20% 40% 60% 80% 100% 
Movielens w.r.t. NDCG@lO 

0.12 

0.11 

0.10 

0.09 

0.08 

0.07 

0.06 

0.05 

0.04 

.... ..... 
'lllr ... 

凰匾

" .. . .. 

j ...__ 
. -

J .. 

1 嘈.,_ DualGNN-origin 
1士DualGNN-missing

�....... MMGCN-origin 
1L,-----
士MMGCN-missing

.... .... 

.... " .. 

矗胤 矗匾

" � 

凰匾

........
、

I 

100% 20% 40% 60% 80% 
Tiktok w.r.t. NDCG@lO 

� ... 

'II. 

. 

＼ 
凰匾

100% 

Fig. 9. Comparative experiment under the situation of modality-missing.

3) Effect of the sampled user co-occurrence number and
aggregation methods. We conducted experiments to analyze
the impact of the sampled user co-occurrence number and
different aggregation methods. Specifically, we adopted the
mean and softmax weighted aggregation methods described
respectively in Eqn. 6 and Eqn. 7, namely DualGNN-Mean
and DualGNN-Softmax to aggregate information from neigh-
bor nodes in the user co-occurrence graph. The results are
shown in Figure 5. From the results, we have the follow-
ing observations: (1) When the sampled user co-occurrence
number varies from 10 to 40, results of Recall@10 and
NDCG@10 rise slowly. However, as the sampled user co-
occurrence number increases further, the performance becomes
worse. Since the co-occurrence times between each user and
his/her co-occurrence users is not consistent, aggregating users
with large count of co-occurrence times is more beneficial
to model the multi-modal user preference. (2) The softmax
weighted aggregation outperforms the mean aggregation on
two datasets, which implies that giving more aggregation
weight to neighbor users who have more co-occurrence times
could boost the model’s performance

G. Case Study (RQ3)

1) t-SNE comparison: In this section, we provided a visu-
alization experiments for the DualGNN framework.

We provided 5 users (represented by triangles in different
colours) randomly selected from the Movielens datasets with
all of their visited micro-videos, and we used the t-Distributed
Stochastic Neighbor Embedding (t-SNE) in 2-dimension to ex-
hibit representations of users and micro-videos. As illustrated
in Figure 6, we visualized their representations, which are
learned from LightGCN and DualGNN, respectively. We found
that compared with LightGCN’s distribution, DualGNN could
represent the users more discriminately. Specially, there are

several micro-videos that are far away from their correspond-
ing users in the result of LightGCN. The reason we suggest
is that LightGCN ignores micro-videos’ multi-modal features,
and only using ID embeddings is not efficient to model user’s
multi-modal tastes. On the contrary, DualGNN could model
user’s multi-modal preference effectively.

2) Fusion pattern visualization: Considering that MMGCN
integrates user’s single-model preferences into multi-modal
preference, we compared the multi-modal preference repre-
sentation learned from DualGNN with which learned from
MMGCN, in order to verify that DualGNN has indeed learned
the user’s personalized fusion pattern. We provided several co-
occurrence users who have interacted with the same micro-
videos from the Movielens dataset. The fusion pattern among
the co-occurrence users could be computed as the similarity
of the embedding between the selected user and his/her co-
occurrence users.

As illustrated in Figure 7, we visualized their embeddings.
Each selected user has 64 dim values, and we placed several
red dashed boxes to show the fusion pattern difference between
representations learned from DualGNN and MMGCN. It is
obviously that the same dim values of the selected user
and his/her co-occurrence users learned from DualGNN are
more similar than those learned from MMGCN. The result
demonstrates that our proposed model could better capture
the user’s multi-modal preference, by using the personalized
fusion pattern to inductively fuse each single-modal preference
of the user.

In addition, we selected 12 users (denoted as u1...u12
in Figure 8) from each dataset and showed their learned
construction weights for different modalities in Figure 8. The
discriminative weights of different modalities show that each
user has personalized taste on different modalities. Specially,
users’ construction weights of different modalities is more
discriminating on Tiktok than on Movielens. The reason is
that Movielens is more dense than Tiktok, so the difference
in user preferences for different modalities is likely to be less
obvious.

H. Modality Missing Study (RQ4)

To study how DualGNN perform in the modality-missing
cases, we mimicked the scenario in the training data. Specif-
ically, we first select a certain number of micro-videos from
all the micro-videos by the drop-ratio, then shuffle and divide
them equally into three groups for different modalities, and
then remove these micro-videos associated with the edges from
the interaction graph in each modality. In this way, when the
drop-ratio grows to 100%, at least one modality information
of each micro-video is missing. Then, we compared the
performances of MMGCN and DualGNN in this setting, and
results of experiments are shown in Figure 9.

Note that the horizontal axis refers to the proportion of
micro-videos selected accounting for the total number of
micro-videos. Clearly, DualGNN shows significant improve-
ments over MMGCN in the modality-missing cases, and
we found when the drop-ratio grows, the improvements are
more significant. To be more specific, when drop-ratio is
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set as 100%, the decrease percentage of DualGNN is 1.45%
and 4.12% in Movielens and Tiktok, respectively, and the
decrease percentage of MMGCN is 15.61% and 29.7% in
Movielens and Tiktok, respectively. Considering the lack of
items’ information in specific modality, the user-item bipartite
graph could be perturbed by removing the corresponding
edges, which hinders the representation learning of the user
preference. Therefore, the reason why DualGNN has obvi-
ous improvement compared with MMGCN is that MMGCN
could not supplement for the modality-missing information
after learning single-modal user preference, while DualGNN
could make up for it using the user co-occurrence graph.
This promising finding again verifies the significance of
multi-modal information aggregation in solving the modality-
missing problem.

VI. CONCLUSION

In this paper, we aim to solve the challenge of modeling
users’ preferences for multiple modalities and the modality-
missing problem in the micro-video recommendation task.
Therefore, we develop a novel model, named DualGNN, which
consists two key modules, i.e., the single-modal representation
learning module and the multi-modal representation learning
module, in order to attentively construct the multi-modal infor-
mation and inductively model users’ multi-modal preferences.
To the best of our knowledge, this work is the first attempt
to consider how to define the particular fusion pattern for
each user in the micro-video recommendation. However, we
find that the model using the multi-modal features is easy to
be overfiting, and we guess it may be caused by the naive
feature pre-processing and aggregation methods. In the future,
we expect to study on this question and give some proper
solutions.
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